
Equuleus Technologies

Dependency Injection & 
Mocking

Optional Subheading
Month xx, 2016



Equuleus Technologies

What is Dependency Injection?
This is a pattern used for decoupling components and layers in the system. The pattern is 
implemented through injecting dependencies into a component when it is constructed. 
These dependences are usually provided as interfaces for further decoupling and to 
support testability.

The sources used for this exercise can be found on the final slide.



Equuleus Technologies

Pure Dependency Injection (Poor man’s 
DI)

Pure Dependency Injection uses constructor or property Injection where lower level 
components are passed using constructors or properties. 

var svc = new ShippingService(new ProductLocator(),
new PricingService(), new InventoryService(),
new TrackingRepository(new ConfigProvider()),
new Logger(new EmailLogger(new ConfigProvider())));



Equuleus Technologies

DI container
DI Container simplifies the creation of Compostion Roots especially for dependencies 
having complex setup scenarios. 

DI Container also provides benefits like Interception (for Aspect oriented programming) 
for cross-cutting concerns like logging, caching security etc.

var svc = IoC.Resolve<IShippingService>();



Equuleus Technologies

Comparing DI Containers
Autofac DryIoc Simple Injector Unity

Configuration XML/Auto Auto XML/Auto

Custom Lifetimes Yes Yes Yes

Interception Yes Yes Yes

Auto Diagnostics Yes

Speed Average Fast Fast Average



Equuleus Technologies

Pros & Cons 
Advantage Disadvantages

Pure DI Easy to learn
Strongly typed
Rapid feedback

High maintenance

DI Container Low maintenance
Convention registration
Xml registration

Weakly typed
Harder to learn
Slower feedback



Equuleus Technologies

DI Container Capabilities to Consider
List/array dependencies - When several registrations of IService exist in a container, many 
frameworks automatically provide IService[] / List<IService>.
◦ Autofac/DryIoc/SimpleInjector have a better support than Unity

Open Generics - Service<> can be registered as IService<>, and then any request for IService<X> 
should be resolved with Service<X>.

Optional parameters - Optional parameters can be used to specify an optional dependency
◦ Autofac/DryIoc have better support than SimpleInjector/Unity

Func & Lazy support - When TService is registered in a container, many frameworks 
automatically provide Func<..., TService> & Lazy<TService>
◦ DryIoc > Autofac> Unity > SimpleInjector

Covariance & Contravariance
◦ Varying capabilities with different containers.



Equuleus Technologies

Unity
Unity was originally developed by Microsoft, though it is no longer supported by Microsoft and it 
is currently maintained by the community.

Unity allows for configuration using both code and xml, configuration of the containers is similar 
and swapping them out is a fairly straightforward task.

We are using unity for our examples



Equuleus Technologies

Unity with XML 
configuration/ServiceLocator

Code

UnityContainer container = new UnityContainer();

// load xml configuration
container.LoadConfiguration();

// register with the service location
ServiceLocator.SetLocatorProvider(() => new UnityServiceLocator(container));

// resolving using the service locator
IClient client = ServiceLocator.Current.GetInstance<IClient>();

Configuration using Code

container.RegisterType<IService, SomeService>();
Container.RegisterType<IClient, SomeClient>();

Resolving using the container instead of Service Locator
IClient client = container.Resolve<IClient>();



Equuleus Technologies

Unity Configuration - XML



Equuleus Technologies

Unity Interception



Equuleus Technologies

Mocking
The correct way of unit testing is to isolate the behavior of the object we want to test 
from its external dependencies. This way we can get easily and comprehensively test all 
code paths to verify system behavior. 

Mock is an object that simulates the behavior of a real method/object in controlled ways. 
We replace the other objects by mocks that simulate the behavior of the real objects.



Equuleus Technologies

Moq
Moq is a free mocking library that helps in writing tests, it has a clean fluent interface that makes it easy to use.

var tester = new Mock<ITester>();

// Setup a callback for a void method. -------

tester.Setup(t => t.Void(It.IsAny<string>())).Callback<string>(s => voidArg = s);

// Setup the result of a method. -------------

tester.Setup(t => t.Bool()).Returns(true);

// Setup that throws an exception ------------

tester.Setup(t => t.Exception(It.IsAny<string>)) .Throws(new Exception());

// Ensure that a function was called. --------

tester.Verify(m => m.Void("A"), Times.Once);

// Ensure that a function was NOT called. ----

tester.Verify(m => m.Void("B"), Times.Never);



Equuleus Technologies

AutoFixtures
AutoFixtures helps in the setup of data for unit tests, this way developers can focus on 
data that is tested rather than how to setup the test scenario, by making it easier to create 
objects graphs containing test data

// Fixture setup with Moq integration

var fixture = new Fixture().Customize(new AutoMoqCustomization());

// Freeze returns the same Mock<IDAL> implementation, the one with expectations

Mock<IDAL> mapMock = fixture.Freeze<Mock<IDAL>>();

// Creates an anonymous variable of the type ClassA

// If the constructor below is parameterized that takes in an implementation of IDAL, it will use 
the frozen mock object along with other parameters

ClassA objectA = fixture.Create<ClassA>();



Equuleus Technologies

Shouldly
Shouldly provides better assertion than what the testing frameworks provide. 

Improved test code readability.

Shouldly - contestant.Points.ShouldBe(1337);

Test Framework - Assert.That(contestant.Points, Is.EqualTo(1337));

Better test failure messages.

Shouldly - contestant.Points should be 1337 but was 0

Test Framework - Expected 1337 but was 0



Equuleus Technologies

Resources
Dependency Injection & Mocking – code samples


